TEE-903 Phase Change Thermal Processes

Course Objectives

- 1. The objectives of the course are as under:
 - a. To describe the present state-of-the-art knowledge about boiling and condensation heat transfer.
 - b. The students will learn boiling and condensation models and investigate the heat transfer in conventional, mini and micro channels
 - c. To discuss the instrumentation, working principles, and capabilities of quantifying boiling and condensation phenomenon in thermal systems
 - d. To provide the students with the advanced academic background necessary to contribute effectively to technically demanding projects in the field of boiling and condensation.

Course Contents

2. Contents with suggested contact hours

No.	Topics	Contac
		t Hours
	Boiling and Condensation	
a.	Vapor Liquid Equilibrium Properties	
	Representation of Solid-Liquid-Vapor Phase	
	Interactions	2
	Regimes of boiling	
	Two-Phase Flow	
	Condensation	
	Pool Boiling	
	Pool Boiling Curve	
	Heterogeneous Bubble Nucleation and	
	Ebullition	
b.	Nucleate Boiling Correlations	5
	Hydrodynamic of Pool Boiling	
	Film Boiling	
	Minimum Film Boiling	
	Transition Boiling	

		Enhancement Techniques in Peol Reiling		
	Enhancement Techniques in Pool Boiling			
	FI	ow Boiling		
	•	Forced-Flow Boiling Regimes		
	•	Flow Boiling Curves		
	•	Flow Patterns and Temperature Variation in		
		Subcooled Boiling		
	•	Onset of Nucleate Boiling		
	•	Onset of Significant Void		
	•	Hydrodynamics of Subcooled Flow Boiling		
	•	Pressure Drop in Subcooled Flow Boiling	0	
C.	•	Partial Flow Boiling	6	
	•	Fully Developed Subcooled Flow Boiling		
	•	Characteristics of Saturated Flow Boiling		
	•	Saturated Flow Boiling Heat Transfer		
		Correlations		
	•	Flow-Regime-Dependent Correlations for		
		Saturated		
	•	Boiling in Horizontal Channels		
	•	Two-Phase Flow Instability		
	Critical Heat Flux and Post-CHF Heat Transfer in			
	FI	ow Boiling		
	•	Critical Heat Flux Mechanisms		
	•	Microscopic Analysis of CHF Mechanisms		
	•	Experiments and Parametric Trends		
	•	Correlations for Upward Flow in Vertical		
d.		Channels	5	
	•	Correlations for Subcooled Upward Flow of		
		Water in Vertical Channels		
	•	Mechanistic Models for DNB		
	•	Mechanistic Models for Dry out		
	•	CHF in Inclined and Horizontal Channels		
	•	Post-Critical Heat Flux Heat Transfer		
L				

	Boiling Heat Transfer in Small Passages		
e.	Minichannel- and Microchannel		
	Boiling Two-Phase Flow Patterns and Flow		
	Flow Regimes in Minichannels	_	
	Flow Regimes in Arrays of Parallel Channels	8	
	Onset of Nucleate Boiling and Onset of		
	Significant Void		
	ONB and OSV in Channels		
	Boiling Heat Transfer		
	Critical Heat Flux in Small Channels		
	Condensation		
	Basic Processes in Condensation		
	 Thermal Resistances in Condensation 		
	Laminar Condensation on Isothermal, Vertical,		
	and Inclined Flat Surfaces		
	 Empirical Correlations for Wavy-Laminar and 		
f.	Turbulent Film	5	
	 Condensation on Vertical Flat Surfaces 		
	Interfacial Shear		
	Laminar Film Condensation on Horizontal Tubes		
	 Condensation in the Presence of a 		
	Noncondensable		
	Fog Formation		
	Internal-Flow Condensation and Condensation		
	on Liquid Jets and Droplets		
	Two-Phase Flow Regimes		
g.	Condensation Heat Transfer Correlations for a	4	
	Pure Saturated Vapor		
	Effect of Noncondensables on Condensation		
	Heat Transfer		
	Direct-Contact Condensation		

	Mechanistic Models for Condensing Annular	
	Flow	
	Flow Condensation in Small Channels	
h.	Flow Condensation in Small Channels	
	Condensation Flow Regimes and Pressure Drop	
	in Small Channels	
	Flow Regimes in Minichannels	4
	Flow Regimes in Microchannels	
	Pressure Drop in Condensing Two-Phase Flows	
	Flow Condensation Heat Transfer in Small	
	Channels	
	Instrumentation in Boiling and Condensation	
	Local Void Fraction Measurements	
	Line Void Fraction Measurements	
	Area Void Fraction Measurements	
;	Mass Flow Rate Measurements	4
i.	Volumetric Interfacial Area Measurements	4
	Liquid Crystal Thermography in Boiling	
	High Speed Camera	
	Thermal Imaging Camera	
	Measurements of Other Quantities of Interest	
j.	Special Topics and Applications	2
		45

Course Outcomes

3. Upon successful completion of this course, the student will gain the knowledge about the theory and existing works that are address to a specific problem. Acquiring the ability to solve the scientific problems in the field of boiling and condensation technology and develop energy efficient systems.

4. Recommended Reading (including Textbooks and Reference books).

No.	Title	Author(s)	Books
a.	Two-Phase Flow, Boiling and Condensation	S. Mostafa Ghiaasiaan	Text
b.	Boiling Heat Transfer and Two-Phase Flow	L. S. Tong, Y. S. Tang	Text
с.	Handbook of Phase Change: Boiling and Condensation	Satish G. Kandlikar	Text
d.	Convective Boiling and Condensation	John G. Collier and John R. Thome	Ref
e.	Heat Transfer in Condensation and Boiling	Karl Stephan	Ref
f.	Multiphase Flow Dynamics: Nuclear Thermal Hydraulics	Nikolay Ivanov Kolev	Ref
g.	Nuclear System I: Thermal Hydraulic Fundamentals	N.E. Todreas, and M.S. Kazimi	Ref
h.	Nuclear Heat Transport	M. M. El-Waqil	Ref
i.	Liquid-Vapor Phase- Change Phenomena	Van P. Carey	Ref
j.	Heat Transfer and Fluid Flow in Minichannels and Microchannels	Satish G. Kandlikar, Srinivas Garimella, Dongqing Li, Ste ´phane Colin and Michael R. King	Ref